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Abstract: Algebraic cryptanalysis is a potentially powerful attack on symmetric key block ciphers. This paper presents 

Algebraic cryptanalysis on Rijndael AES, based on its rich algebraic structure. The paper begins by defining the 

mathematical model of AES then constructing a system of mostly nonlinear polynomial equations representing S-Box. 

Then applying a powerful algebraic tool; Gröbner basis; to overcome the nonlinearity features of S-Box. Finally, it 

shows that how applying Gröbner basis of AES constructs a spare matrix which makes the system easy to be solved. 

Moreover, we have proved the “Resistance of Algebraic Attack” RAA value (𝚪) has been reduced. 
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I. INTRODUCTION 

 

Block ciphers are an important and omnipresent building 

block of modern cryptography. In August 2000, the 

Belgianblock cipher Rijndael was selected as a winner to 

be the Advanced Encryption Standard (AES)[1]. This 

happened in an unprecedented way – an open contest with 

international participation was held by the NIST to find a 

successor for the 24-year old Data Encryption Standard 

(DES). Rijndael is a key-iterated block cipher with a very 

rich and strong algebraic structure. The block and key 

length are variable in steps of 32 bits between 128 and 256 

bits. The only valid data block length for AES is 128 bits 

however; the key length for AES may be 128, 192 or 256 

bits. For the Rijndael block cipher, two algebraic 

representations in the form of multivariate polynomial 

systems of equations have been proposed so far. Courtois 

and Pieprzyk[2]have demonstrated how to obtain over 

defined systems of quadratic equations over GF(2), while 

[3]have constructed an embedding for the AES called Big 

Encryption System (BES) for which a system of over 

defined quadratic equations over 𝐺𝐹(28) exists. A 

representation considering the output of the S-Box as a 

polynomial expression of the input over GF(28) has thus 

far been neglected because the polynomials in this case are 

of relatively high degree. Using this representation; the 

key recovery problem for the AES cipher with a key 

length of 128 bits can be described asa system of 200 

polynomial equations of degree 254 and 152 linear 

equations.  
 

This paper will shows that by choosing an appropriate 

term order and by applying linear operations only, a 

Gröbner basis for AES-128 from this system can be 

generatedwithout a single polynomial reduction. 

 The structure of this paper is as follows: in Section IIthe 

cryptanalysis types on AES will be discussed.  

 

 

While in Section III  the basic structure of AES will be 

explained., in Section IVwe study  the mathematical 

model of AES , Finally we generate the Grobner basis of 

AES  then compute RAAand  summarize the impact of our 

result in Section Vand conclude. 

 

II. CRYPTANALYSIS OF RIJNDAEL 

 

Cryptanalysis is a general tool which permits one to 

breach the security of a wide range of cryptographic 

schemes. This section discusses various types of AES 

Cryptanalysis. 

 

 Differential and linear cryptanalysis 

Differential and linear cryptanalysis are the two most 

powerful general purpose cryptographic attacks known up 

to date. Providing lower bounds for the complexity of 

these attacks was the main cryptographic criterion in the 

design of Rijndael. For Rijndael, an upper bound of 

2150for the probability of any 4-round differential trail and 

of 275for the correlation of any 4-round linear trail has 

been proven. In combination with the number of rounds in 

Rijndael, these bounds provide a high security margin 

against both differential and linear cryptanalysis [4]. 

Nowadays, a new block cipher is only taken seriously if it 

is accompanied with evidence that it resists differential 

and linear cryptanalysis. Naturally, differential and linear 

cryptanalysis approaches are not the only attacks that can 

be mounted against block ciphers. 
 

Linear and differential attacks have been extended in 

several ways and new attacks have been published that are 

related to them. The best known extension is known as 

truncated differentials. They have been already taken into 

account in the design of Rijndael from the start. Other 
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attacks use difference propagation and correlation in 

different ways. There exists an impossible differential 

attack on 5 rounds, requiring 229.5 chosen plaintexts [5], 

231 encryptions, 242 bytes of memory and 226  time for 

pre-computation. This result was improved in [6] and lead 

to an attack on a 6 round version.  The resistance against 

differential cryptanalysis is measured by 𝛿(𝐹). 
 

Definition 1 . Assume F(x) = (f1(x), … , fn(x)) 

From GF(2)nto GF(2)n is a multiple output Boolean 

function, the differential uniformity is denoted 

by δ(F)which is defined by 

δ(F) = max|{x: F(x) − F(X + α) = β}| 
Where α ∈ GF(2)n, β ∈ GF(2)n, α ≠ 0 

 

Theorem1: AES S-box has δ(F) = 4 

Proof: see [7]. 

Its known that the minimum of δ(F) is 1,so thatAES S-box 

has a certain ability to resist against differential attack . 

While the resistance against linear cryptanalysis is 

measured by N(F). 
 

Definition 2.Assume F(x) = (f1(x), … , fn(x)) 

   From GF(2)nto GF(2)n is a multiple output Boolean 

function, the nonlinearity is denoted by N(F)  which is 

defined by 

N(F) = min d(u. F(x), l(x)) 

Where u ≠ 0 ∈ GF(2)n , l(x) ∈ Ln(x) and Ln(x) is the set 

of all linear function from F(2)nto GF(2)n , AES S-Box 

have N(F) = 112.Wen while[8] Pointed out that the 

N(F) = 2n−1 − 2
n

2
−1

=28−1 − 2
8

2
−1 = 120. 

AES S-Box is not perfect nonlinearity function. 

 

 Square attacks.  

The most powerful cryptanalysis of Rijndael to date is the 

square attack. This is a chosen-plaintext attack that 

exploits the byte-oriented structure of the cipher and 

works on any cipher with a round structure similar to that 

one of Rijndael. It was first described in the paper 

presenting a predecessor of Rijndael, the block cipher 

Square [8] and since then, it is often referred to as the 

Square attack. Other names for this attack are ’saturation-

attack’ (proposed by Lucks in [9]).This attack can break a 

7 rounds of Rijndael for 192 and 256-bit keys, i.e. AES-

192 and AES-256, ’Integral Cryptanalysis’ by L. Knudsen 

and D. Wagner [10] or ’Structural attacks’ by A. Biryukov 

and A. Shamir [11] (neither of the two last papers describe 

an attack on Rijndael). The original square attack can 

break round-reduced variants of Rijndael up to 6 or 7 

rounds faster than exhaustive key search. N. Ferguson et. 

al. [12] proposed some optimizations that reduce the work 

factor of the attack. So, this attack breaks 9-round AES-

256 keys with 277 plaintexts under 256 related keys, and 

2224encryptions.  

 

 Collision Attacks.  

This attack has been introduced by Gilbert and Minier in 

[13] and is still the best attack in the sense that it can break 

7 rounds of AES-128, AES-192 and AES-256 (for 128-bit 

keys the authors claimed that the complexity of the attack 

is marginally lower than the complexity of an exhaustive 

key search). 

 

 Algebraic cryptanalysis 

Algebraic techniques have been successfully applied 

against a number of multivariate schemes and stream 

ciphers. Yet, their feasibility against block ciphers remains 

the source of much speculation. The goal of algebraic 

cryptanalysis is to break cryptosystems by using 

mathematical tools coming from symbolic computation 

and modern algebra. More precisely, an algebraic attack 

can be decomposed in two steps: first the cryptosystem 

and its specifics have to be converted into a set of 

multivariate polynomial equations, then the solutions of 

the obtained polynomial system have to be computed. The 

security of a cryptographic primitive thus strongly relies 

on the difficulty of solving the associated polynomial 

system. These attacks have been proven to be very 

efficient for both public key or symmetric 

cryptosystems;block and stream ciphers.  
 

In this paper, the focus will be on the polynomial system 

solving part. It is well known that this problem is very 

difficult (NP-hard in general). However, for many 

instances coming from algebraic attacks, the resolution is 

easier than in the worst-case scenario. Gröbner bases, first 

introduced in [14], are a fundamental tool for tackling this 

problem the basic idea behind the algebraic attack is to set 

up a system of equations including key bits and output bits 

and then to solve this system to recover key or key stream 

information [15]. A system of linear equations may be 

solved by Gaussian elimination method or any other 

known method. However, a cipher algorithm may contain 

a non-linear part. In this case the equations will be non-

linear. If the system of equations is clearly defined then 

the equation set can be solved using techniques such as 

linearization, or other methods such as Gröbner basis. 
 

Since successful Gröbner basis attacks on block ciphers 

are possible, it must be studied carefully how Gröbner 

basis algorithms depend on the structure of polynomial 

systems corresponding to block ciphers. One of the 

possible approaches is based on the notation of semi-

regular sequences of polynomials[15,16].  
 

Using the AES as an example, we have considered three 

algebraic representations for block ciphers. It was proved 

(where?) that the BES and AES polynomial equations over 

GF(28) are not semi-regular, and that the AES systems of 

quadratic equations over GF(2) are not semi-regular over 

GF(2).  

 

III. THE BASIC STRUCTURE OF THE AES 

 

Now consider the basic version of the AES, which 

encrypts a 16-byte block using a 16-byte key with 10 

encryption rounds.The input to the AES round function 

can be viewed as a rectangular array of bytes or, 
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equivalently, as a column vector of bytes. Throughout the 

encryption process this byte-structure is fully 

respected[17]. The AES specification defines a round in 

terms of the following three transformations 

 

 
Figure1AES Encryption 

 

There are four basic operations when encrypting with the 

AES., operate on the state array of 16 bytes.  

 

• SubBytes modifies the bytes in the array independently. 

• ShiftRows rotates the four rows of the array 

independently. 

• MixColumns modifies the four columns of the array 

independently. 

• AddRoundKey adds the bytes of the round key and the 

array. 

 

These basic operations form a typical round of encryption. 

A complete description of AES encryption requires an 

initial AddRoundKey ("Round 0") followed by NR rounds 

of computation, where 𝑁𝑟= 10, 12, or 14 for AES-128, 

AES-196, or AES-256 respectively. The last round of 

computation does not contain a MixColumns 

operation[18]. Each round of the AES is considered to 

have three parts. The first is Sub Bytes, in which a 

substitution is performed on each byte of the state array. 

This is termed the substitution layer. The second part is 

Shift Rows followed by Mix Columns, which gives 

diffusion across the state array. This is termed the 

diffusion layer. The final part of an AES round introduces 

key material by Add Round Key. This paper focus on the 

substitution layer  

 

Substitution layer: The substitution layer is based on the 

AES S-box which is, in turn, can be defined by the 

composition of three operations: 

 

Inversion: AES inversion operation is inversion in the 

field F, but extended so that 0 → 0. Thus, the input byte to 

the S-box is regarded as an element 𝑤 ∈ 𝐹 and for 𝑊 ≠ 0 

the output x satisfies 𝑋 = 𝑊−1 and wx = 1. We denote the 

extension to the case 𝑊 = 0 𝑏𝑦𝑋 = 𝑊−1 and give a look-

up table in Figure 2 

 
Figure 2 AES GF(2) linear mapping within S-box 

 

The GF (2)- linear mapping is a linear 

transformation 𝐴: 𝐺𝐹(2)8 → 𝐺𝐹(2)8specified by an 8x8 

circulated matrixover GF(2). The result x of inversion is 

regarded as a vector in𝐺𝐹(2)8 and the output y is given by  

𝑦 = 𝐴(𝑥) 
 

 
 

This inversion is actually optimal with respect to several 

measures of non-linearity.Non-linearity is important to 

protect against several common families of attack, we 

apply an affine (over GF(2)) transformation. The affine 

transformation function A(x) is defined as:  

𝐴(𝑥) = 05𝑥𝐹𝐸 + 09𝑥𝐹𝐷 + 𝐹9𝑥𝐹𝐵 + 25𝑥𝐹 7 + 𝐹4𝑥𝐸𝐹

+ 01𝑥𝐷𝐹 + 𝐵5𝑥𝐵𝐹 + 8𝐹𝑥7𝐹 + 63 
 

Where, 𝑥𝑖 , (𝑖 =  0, … , 7) are the bits of the byte 𝑥𝑖and x7, 

is the most significant bit.  

 

S-box constant. The output byte y of the GF(2)-linear 

mapping is regarded as an element of the Rijndael field F 

and added to the field element 63 to produce the output 

from the S-box. It has been proved that Rijndael has the 

immunity against differential attack and linear attack 

which are the most well-known attacks on block ciphers. 

Because of the simple algebraic structure of Rijndael S-

box, many cryptanalysts focus on the algebraic attack 

which may be an efficient method. As the only nonlinear 

component of Rijndael is S-box and it is a crucial element.  

Recovering a key using a known plain-text attack is 

clearly an NP problem. So, as MQ is an NP-complete 

problem, in theory one should be able to reexpress AES 

key recovery as an MQ problem. Not all instances of an 

NP-complete problem are hard to solve, so perhaps the 

AES MQ problem would be more tractable than the key 

recovery problem in other guises. Courtois and Pieprzyk 
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translated AES key recovery (indeed, key recovery for a 

general class of block ciphers) into an MQ problem over 

GF(2) in the following way[19,20]: Consider a single 

Rijndael S-box. This has one byte, x, of input and one 

byte, z of output. We may specify further and let y be the 

patched inverse of x, so y is x after inversion but before 

applying the affine transformation. The state starts out as 

the 128-bit input. We operate on the stateby performing 

successive rounds. A round is made up of three parts: 

application of the S-box, linear diffusion, and sub key 

addition. 

 

IV. GENERATING S- BOX POLYNOMIALS 

 

S-boxes or substitution boxes are common in block 

ciphers. These are bijective functions on the blocks that 

are, ideally, highly non-linear. Much of the security of 

block ciphers can be thoughtof as ‘residing’ in their S-

boxes. S-box is the same in every round, and it acts 

independently on each byte. Cui et al. [21] (as Courtois 

and Pieprzyk [22] before them) utilize the Rijndael S-box 

composition of two functions to derive an MQ for it. With 

x,as an input, and z,as an output value, this leads to the 

first eight multivariate quadratic equations for Rijndael S-

box. The authors give all the steps and in-between results 

of the complete length of the calculation. They formulate 

and evaluate two additional equations of the byte variables 

to define the S-box completely. Doing so, Cui et 

al.[20]replicate results already presented in 2002 by 

Courtois and Pieprzyk in the extended version of [21].Cui 

et al. derive multivariate quadratic equation coefficients of 

the polynomial expression of the S-box. They write up the 

equation system with indices for rounds and input bytes 

for the AES algorithm (without further using them) which 

will, for clarity, be omitted in what follows. As before, by 

x is denoted the input byte variable of the S-box function. 

Intermediate variables are denoted by y0, y1, . . . , y253 and 

the output variable by z, the S-box transformation can be 

described by the following quadratic equations over 

GF(28) : 
 

0=x3+x5+x6+x1+x2z2+x5z7+x7z4+x7z1+x7z3+x0z1+x6

z5+x6z3+x7z7+x4z6+x4z1+x4z5+x4z0+x4z2+x1z5+x1z3

+x5z5+x5z3+x5z0+x3z1+x3z3+x6z6+x3z4+x2z3+x2z6+x

4z7+x0z5+x0z3+x1z4+x1z7+x6z1+x3z0+x4z3+x0z7+x1z

6+x2z5, 

0=x3+x6+x1+x2z4+x5z1+x7z1+x5z6+x0z6+x0z4+x6z3+

x6z4+x6z7+x7z7+x7z5+x7z2+x4z5+x4z0+x1z5+x1z3+x5

z5+x5z3+x3z1+x3z3+x3z6+x2z1+x2z3+x4z7+x0z5+x0z3

+x1z2+x6z1+x3z5+x3z0+x3z2+x4z3+x0z7+x3z7+x1z6+x

2z0, 

0=x3+x4+x5+x1+x2z2+x2z7+x5z1+x5z4+x5z7+x7z6+x7

z4+x7z1+x0z6+x6z5+x6z2+x6z7+x7z7+x4z6+x4z1+x4z5

+x1z3+x1z0+x5z3+x3z3+x2z1+x2z3+x2z6+x0z5+x0z3+x

1z4+x6z1+x3z5+x3z0+x4z3+x0z2+x3z7+x1z1+x2z5+x2z

0, 

0=x3+x4+x1+x2z7+x5z1+x5z7+x7z4+x0z4+x0z1+x6z4+

x6z7+x7z7+x7z5+x7z2+x4z4+x4z1+x1z5+x1z3+x1z0+x5

z5+x3z1+x3z3+x3z6+x6z6+x5z2+x2z3+x4z7+x0z3+x0z0

+x1z2+x1z7+x6z1+x3z5+x4z3+x1z1+x1z6+x2z5+x2z0, 

0=x2+x6+x7+x1+x2z2+x5z1+x5z4+x7z4+x7z1+x5z6+x7

z3+x0z6+x6z3+x6z2+x6z4+x6z7+x7z7+x7z2+x4z6+x4z0

+x1z0+x5z5+x5z3+x5z0+x6z6+x2z1+x0z0+x1z4+x6z1+x

3z0+x4z3+x0z2+x3z7+x1z6, 

0=x2+x3+x4+x5+x1+x2z2+x2z7+x5z1+x5z4+x7z6+x7z1

+x5z6+x0z6+x0z4+x0z1+x6z5+x6z2+x6z4+x6z7+x7z2+x

4z4+x4z2+x1z5+x1z3+x5z5+x5z0+x3z1+x3z6+x6z6+x5z

2+x3z4+x2z3+x2z6+x4z7+x0z5+x0z3+x0z0+x1z2+x1z4+

x1z7+x0z7+x1z1+x1z6+x2z5+x2z0, 

0=x0+x2+x3+x7+x2z4+x5z4+x5z7+x7z6+x7z1+x5z6+x0

z6+x0z4+x0z1+x6z2+x7z7+x4z6+x4z4+x4z1+x4z5+x4z0

+x4z2+x1z5+x1z3+x1z0+x5z5+x6z6+x5z2+x3z4+x2z1+x

2z6+x7z0+x0z5+x0z3+x1z2+x1z7+x6z1+x3z2+x0z2+x0z

7+x3z7+x1z6, 

0=x3+x5+x2z4+x2z7+x5z1+x5z7+x7z6+x7z1+x5z6+x7z

3+x0z6+x0z1+x6z5+x6z3+x6z0+x6z7+x7z5+x4z4+x4z1+

x4z0+x1z5+x1z3+x5z5+x5z3+x5z0+x3z3+x3z6+x5z2+x2

z3+x2z6+x0z0+x1z7+x3z5+x3z2+x4z3+x0z2+x1z1+x2z, 

0=x5+x7+z7+z5+z3+z1+x5z1+x5z4+x7z3+x0z6+x0z4+x

0z1+x6z3+x7z2+x4z4+x4z2+x1z5+x1z0+x5z3+x6z6+x3z

4+x2z3+x4z7+x7z0+x6z1+x3z7+x2z5+x2z0, 

0=x3+x5+x7+z6+z7+z5+z4+z3+x2z2+x2z4+x2z7+x7z1+

x6z5+x6z0+x6z2+x6z4+x7z7+x7z2+x4z6+x4z1+x5z3+x5

z0+x3z1+x3z3+x6z6+x5z2+x3z4+x0z5+x0z3+x0z0+x1z4

+x1z7+x6z1+x4z3, 

0=x3+x5+x6+x7+x1+z6+z5+z3+z2+x5z1+x5z7+x7z6+x7

z1+x0z4+x6z5+x6z3+x6z0+x6z7+x4z6+x4z4+x4z1+x4z5

+x4z0+x4z2+x1z3+x3z3+x6z6+x5z2+x2z1+x2z3+x2z6+x

7z0+x1z4+x3z0+x3z2+x0z2+x0z7+x1z1, 

0=x3+x4+x5+x1+z4+z3+z1+z0+x2z2+x2z4+x5z1+x5z6+

x0z6+x0z1+x6z5+x6z2+x6z4+x6z7+x7z7+x7z5+x4z6+x4

z5+x4z0+x1z3+x1z0+x5z0+x3z1+x6z6+x2z1+x2z6+x4z7

+x7z0+x0z3+x1z2+x3z2+x4z3+x3z7+x2z5+x2z0, 

0=x2+x3+x5+x6+x1+z6+z2+z0+x2z7+x5z1+x5z4+x5z7+

x7z6+x7z4+x7z3+x6z5+x7z7+x7z2+x4z6+x4z5+x1z5+x1

z0+x5z5+x5z3+x5z0+x3z1+x3z6+x6z6+x3z4+x2z6+x7z0

+x0z5+x0z0+x1z2+x1z7+x6z1+x3z0+x0z2+x3z7+x1z1, 

0=x0+x3+x4+x5+x1+z6+z7+z5+z4+z3+z1+z0+x5z1+x5z

7+x7z4+x5z6+x0z4+x0z1+x6z5+x6z3+x6z0+x6z4+x7z7+

x7z5+x4z6+x4z4+x4z1+x4z5+x4z2+x1z5+x5z0+x3z1+x3

z3+x6z6+x5z2+x2z3+x2z6+x4z7+x7z0+x1z4+x1z7+x6z1

+x3z5+x3z0+x0z7+x1z1+x1z6+x2z0, 

0=x2+x3+x7+x1+z6+z7+z5+z4+z3+z2+z1+1+x2z2+x2z4

+x2z7+x5z4+x5z7+x7z1+x7z3+x0z6+x6z5+x6z3+x6z0+x

6z2+x6z4+x6z7+x7z7+x4z6+x4z4+x4z1+x4z5+x4z0+x1z

5+x1z3+x1z0+x5z5+x5z0+x3z1+x3z6+x2z1+x2z6+x0z3+

x0z0+x3z0+x3z2+x4z3+x3z7+x1z1+x2z5, 

0=x0+x7+x1+z6+z2+z1+z0+1+x2z4+x5z4+x5z7+x7z4+x

7z1+x7z3+x6z2+x6z4+x6z7+x4z5+x4z0+x1z5+x2z1+x2z

6+x0z5+x1z2+x1z7+x3z5+x3z0+x4z3+x0z2+x0z7+x1z1+

x1z6 

 

V. CONSTRUCTION OF THE GRÖBNER  BASIS 

 

One way to solve a system of polynomial equations is to 

construct a new system of polynomial equations with the 

same solutions as the initial one, but with a simpler 

structure and then solve this “simpler” system .This 

method is based on polynomial ideal theory and 
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multivariate polynomial division and then generates 

special bases of these ideals, called Gröbner  bases. The 

algorithm is based on the construction of S-polynomials 

and on polynomial division of these S-polynomials 

[22,23]. Multivariate polynomial division requires a 

monomial ordering and different orderings can give rise to 

radically different Gröbner bases. 

 

Definition 1: (Ideal)[23] The ideal defined by a set of 

polynomials F = {f1, … , fm/fi ∈ 𝔽[x1 … , xn]} is the set of 

all polynomials that can be generated as polynomial 

combinations of the initial polynomials f1, … , fm 

I = {∑ fihi:

m

i=1

hi ∈ ℂ[x1 … , xn]}  

Where hi are arbitrary polynomials from𝔽[x1 … , xn]. 
 

Definition2:[24] (Lexicographic ordering) let xα  and xβ 

be some monomials.we say xα >lex xβ if,in the difference 

α − β ∈ ℤn, the left most nonzero entry is positive. 

 

Definition3:[24] (Graded Reverse lexicographic ordering) 

) let xα  and xβ be some monomials. we say xα >grevlex xβ 

if∑ αi
n
i=1 > ∑ β

i
n
i=1 or if ∑ αi

n
i=1 = ∑ β

i
n
i=1  and   the 

difference α − β ∈ ℤn, the right most nonzero entry is 

negative. 

 

Definition 4: [24](S-Polynomial) let f, g ∈ 𝔽[x1 … , xn] be 

non zero polynomials and > 

Some fixed monomial ordering on 𝔽[x1 … , xn]. 
The S-Polynomial of f and g, denoted S (gp, gq), is the 

polynomial 
] 

S (gp, gq) =
LCM(LM(gp), LM(gq))

LT(gp)
gp

−
LCM(LM(gp), LM(gq))

LT(gq)
gq 

Where LCM(LM(gp), LM(gq)) is the least common 

multiple of the monomial LM(gp) and LM(gq).Theabove 

mentioned definition indicates that S-polynomials are 

cross product of leading terms and are constructed to 

cancel leading terms. The leading terms of the two 

components of  S(gp, gq) are equal and therefore, cancel 

each other. 

 

Example: Let G={g1, g2} where g1 = xy2z − xyz and 

g2 = x2yz − z2.These polynomial are ordered with 

respect to Lex order .LM(g1) = xy2z, LM(g2) = x2yz  so 

LCM(LM(g1), LM(g2)) = x2y2z . then S (g1, g2) =
x2y2z  

xy2z
g1 −

x2y2z 

x2yz
g2 

=−x2yz + yz2. 

 

Theorem 1: (Buchberger's criterion) 

A finite set of polynomials G = {g1, … , gl}, G ⊂ I isa 

Gröbner basis of I if and only if S(gp, gq)
G

= 0 

for all pairs i, j ∈ 1, … , t, i ≠ j. 

Proof: The proof of this theorem can be found in [24] 

The simplest version of the Buchberger’s algorithm for 

computing a Gröbner basis of a givenideal is based on this 

criterion.The main problem of AES was nonlinearity of S-

Box and no non-zero linear structure 

 

Theorem 4 [25]:AES S-Box has no non zero linear 

structure. 

Proof: suppose that, on the contrary,AESS-Boxhas no non 

zero linear structure. in this case , let c ≠ 0 satisfies (La ∗
(x + c)−1 + 63) + (La ∗ x−1 + 63) = β where β is a 

constant .it is immediately obvious that La ∗ (x + a)− +
La ∗ x−1 = β. let x = 0  
we can obtain  β = La ∗ c−1, therefore, we have (La ∗
(x + c)−1 + 63) + (La ∗ x−1 + 63) = La ∗ c−1 

sincedet(La) ≠ 0, thus (x + c)−1 = x−1 + c−1 however , 

according to the principle of taking  multiplicative inverse 

, it is obvious that(x + c)254 = x254 + c254 ,i.e., (x +
c)−1 ≠ x−1 + c−1 then there exist a contradiction between 

(x + c)−1 = x−1 + c−1 and (x + c)−1 ≠ x−1 + c−1 

therefore AES S-Box has no non zero linear structure. 

Now our focus in this paper will appear, Gröbner basis is 

efficient tool to overcome the nonlinearity of S-Box also 

after applying Gröbner basis  the RAA  will be reduced , 

in the previous section the system of S-Box  algebraic 

equations was  introduced by applying the Buchberger's  

theorem  with Lexicographic ordering we obtain these 

results  

 

Our Results can be expressed as follows 

{x0,x0z0,x0z1,x0z2,x0z3,x0z4,x0z5,x0z6,x0z7,x1,x1z0,x

1z1,x1z2,x1z3,x1z4,x1z5,x1z6,x1z7,x2,x2z0,x2z1,x2z2,x

2z3,x2z4,x2z5,x2z6,x2z7,x3,x3z0,x3z1,x3z2,x3z3,x3z4,x

3z5,x3z6,x3z7,x4,x4z0,x4z1,x4z2,x4z3,x4z4,x4z5,x4z6,x

4z7,x5,x5z0,x5z1,x5z2,x5z3,x5z4,x5z5,x5z6,x5z7,x6,x6z

0,x6z1,x6z2,x6z3,x6z4,x6z5,x6z6,x6z7,x7,x7z0,x7z1,x7z

2,x7z3,x7z4,x7z5,x7z6,x7z7,z0,z1,z2,z3,z4,z5,z6,z7}] 

{{0, 1, 2, -1, 0, 0, -1, -2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, -1, -2, 

0, 0, -1, 1, 0, 0, 0, -1, 1, -1, 0, 1, -1, 0, -2, 0, 0, 1, 1, 0,  1, -

1, 0, 1, 0, 1, -1, 1, -1, -1, 1, -1, 1, 0, 0, 0, -1, 0, 0, 0,  2, -1, 

0, 0, -1, 0, 1, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 4,  0, 5, -

5, 0, -5, 5, -3, 0, 1, 4, -1, 0, -2, 1, -1, -1, 0, 1, 2, -3,   2, 3, 0, 

0, 2, 0, 1, -3, 4, 2, -6, 6, 4, 2, 0, 3, 0, -4, 3,   3, -2, -2, -2, 0, 

2, 7, 2, 3, 0, 2, 6, 1, 0, 4, -1, -1, 5, 2, 0, -3,   6, 0, 0, 1, 1, 3, 

0, 6, 2, -1, 1, 1, 0, 0, 0, 0, 0, 0}, {0, -8,   0, -8, 8, 1, 8, -7, 4, 

0, 1, -7, 4, 0, 0, -1, 0, 0, 0, 0, -2,   3, -4, -4, 0, 0, -4, 0, -2, 5, 

-5, -5, 10, -10, -6, 0, 0, -5, -2,   6, -6, -5, 5, 3, 4, 0, -5, -10, 

-5, -5, 1, -4, -10, -2, 0, -8, 2,    1, -9, -4, -1, 5, -10, 0, 3, -4, 

-1, -5, -1, -9, -3, 2, 0, 0, 1, 1,  0, 0, 0, 0}, {0, 7, 0, 5, -6, -2, 

-7, 6, -2, 0, -4, 4, -4, 0, 2, -1, 

   1, 0, 0, -1, 2, 0, 2, 5, -1, 0, 2, 0, 1, -3, 5, 4, -9, 7, 4, -2, 0,   

6, 1, -5, 6, 3, -5, -2, -3, 0, 7, 7, 5, 3, -3, 3, 11, -1, 0, 8, -4,    

1, 8, 6, 2, -4, 9, 0, -4, 5, 0, 3, -1, 8, 1, -2, 0, 0, -2, 0, 2, 0, 0, 

0}, {0, 6, 0, 5, -7, 2, -7, 7, 0, 0, -5, 6, -3, 1, 1, 1, 1, -1, 0, 1, 

2, -3, 5, 4, -1, 0, 2, 0, 1, -4, 6, 4, -9, 8, 6, -2, 0, 5, 0, -3, 3, 

6, -5, -5, -2, 0, 4, 9, 6, 2, -2, 3, 11, -1, 0, 8, -5, -1,    9, 5, 1, 

-5, 10, 0, -3, 5, 1, 2, -3, 8, 3, -5, -1, 0, -1, 0, 0, 1,  0, 0}, {0, 

-7, 0, -9, 10, 0, 11, -8, 2, 0, 4, -8, 4, -2, 0, 1, 1, 2,    0, 1, -4, 

4, -4, -5, 1, -2, -2, 0, -1, 7, -9, -4, 13, -9, -6, 2,   0, -8, -1, 5, 
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-4, -7, 5, 4, 5, 0, -5, -11, -7, -1, 3, -3, -13, -1,   0, -10, 8, 1, 

-10, -4, -2, 6, -13, 0, 2, -5, 2, -3, 3, -10, -5, 6,   0, 0, 0, 0, 0, 

0, 0, 2}, {0, 1, 0, 1, -1, -1, -1, -2, -2, 0, 2, 1,   0, -1, -1, 0, -

1, 1, 0, -1, -1, -1, -1, -1, 0, 0, 1, 0, 0, 0, -1, 0,    0, 0, 0, 0, 0, 

-1, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, -2,   2, 0, 0, 1, -1, -

1, -1, 0, 1, -1, 0, 1, -2, 0, 1, 2, 0, 0, 1, 1, 0,   1, 0, 0, 0, 1, 

0}, {0, 3, 0, 5, -2, -2, -3, 2, -4, 0, 4, 2, -2, 0,   0, -1, -1, 0, 0, 

-1, 2, 0, 0, 1, 1, 0, 2, 0, 1, -3, 1, 2, -3, 3, 0,   2, 0, 2, 3, -3, 4, 

1, -1, 2, -3, 0, 1, 3, 1, 3, 1, 1, 1, 3, 0, 2, 2, 1, 2, 0, 0, 0, 3, 2, 

0, 1, 0, 3, 3, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 2, 0, 5, -4, -2, 

-5, 1, -5, 0, 5, 2, -3, -1, -1, -1, -2, -1,   0, -1, 1, -2, 0, -1, 0, 

0, 1, 0, 2, -3, 1, 2, -4, 3, 0, 3, 0, 1,   3, -3, 2, 1, 0, 3, -3, 0, 1, 

4, 0, 3, 0, 1, 1, 4, 1, 2, 3, -2,   3, -2, 0, 0, 1, 0, 2, -2, -1, 3, 4, 

3, 1, 3, 1, 0, 0, 0, 0, 0, 0,   0}, {0, -1, 0, 1, 0, -2, 1, 0, 0, 0, 

0, 0, -2, 0, 2, -1, -1, 0,   0, -1, 0, 2, 0, -1, 1, 2, 0, 0, 1, -1, -1, 

0, 1, -1, -2, 0, 0, 0, 1,   1, 0, -1, 1, 2, -1, 2, 1, -1, -1, 1, 1, -1, 

-1, 1, 0, 0, 0, 1,   0, -2, 2, 0, -1, 0, 0, 1, -2, 1, 1, -2, 1, 0, 0, 

0, 0, 0, 0, 0, 0,   0}, {0, 5, 0, 11, -8, -4, -11, 2, -12, 0, 12,   

6, -6, -2, -2, -3, -5, -2, 0, -1, 2, -4, 0, -3, 1, 0, 4, 0, 3, -7,  1, 

4, -9, 7, 0, 6, 2, 0, 7, -7, 4, 3, -1, 6, -7, 0, 1, 9, 1, 5, 1,   1, 1, 

9, 0, 4, 6, -3, 4, -4, 0, 0, 3, 0, 4, -5, -2, 5, 9, 6, 3, 6,   2, 0, 0, 

0, 0, 0, 0, 0}, {0, 1, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 1,  1, -1, 1, 0, 

0, 0, 1, 1, -1, 1, 2, 0, 0, 1, 1, 0, 0, 2, 1, -1, 2, 2,   1, 0, 1, 0, -

1, 1, 1, 0, -1, 0, 0, 0, 2, 1, 1, 0, 1, 2, 0, 0, 1, 0,   0, 1, 1, 0, -

1, 2, 0, 0, 1, 1, 0, -1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0,   0}, {0, 1, 0, 

-1, 0, 2, 1, 2, 2, 0, -2, 0, 2, 0, 0, 1, 1, 0, 2, 1,   0, 0, 0, 1, -1, 

0, 0, 0, -1, 1, 1, -2, 1, -1, 2, 0, 0, 0, -3, 1, -2,   1, -1, -2, 1, 0, 

1, 1, 1, -1, 1, 1, 3, -3, 0, 0, -2, 1, 0, 2, 0, 0,   1, 0, 0, 1, 2, -1, 

-3, 0, 1, -2, 0, 0, 0, 0, 0, 0, 0, 0}, {0, -3,   0, -6, 5, 2, 6, -2, 

6, 1, -5, -3, 3, 1, 2, 1, 3, 1, 0, 1, -1, 3, 0,   0, 0, 0, -2, 0, -1, 

4, -2, -2, 5, -4, -1, -3, 0, -1, -3, 4, -2, -2,  1, -2, 4, 0, -1, -5, -

1, -3, 0, -1, -2, -4, 0, -3, -2, 2, -3, 2, 0,   1, -2, 0, -2, 2, 1, -3, 

-3, -4, -2, -2, -1, 0, 0, 0, 0, 0, 0,  0}, {2, -7, 0, -3, 4, 0, 5, -4, 

4, 0, 0, -4, 0, 0, 2, -1, 1, 0,  0, -1, 0, 2, -2, -3, -1, 2, -4, 0, 1, 

1, -3, -2, 5, -5, -6, 0,    0, -2, 1, 5, -4, -3, 5, 4, 1, 0, -3, -7, -

3, -3, 1, -3, -5, 1,   0, -4, 2, 1, -4, -4, 0, 2, -7, 0, 2, -1, -4, -3, 

1, -6, -1, 2, 0, 0,   0, 0, 0, 0, 0, 0}} 

 

After notice this result zeros can be seen as majority in our 

work which means S-box can be spare matrix and the 

order of nonlinearity reduced which make S –box easy to 

be solved which was the big problem for breaking AES 

system now no problem for any number of rounds AES as 

a total system become linear.Another advantage can be 

appears after applying Gröbner basis; which is reducing 

RAA “Resistance of AlgebraicAttacks”.The value of this 

reducing can be defined by Γ. 

 

Definition [26]:given r equations of t monomials in 

𝐺𝐹(2)8resistance of algebraic attacks is defined by 

Γ = ((𝑡 − 𝑟)/𝑛)
⌈(𝑡−𝑟/𝑛)⌉

 

 

For AES t=81,r=23,n=8 we can obtain Γ ≈ 222.9 .jung[24] 

claimed Γ should be greater than232 for secure ciphers . 

WhileAES S-Box has Γ ≈ 222.9, it can be a weakness of 

AES. So we can try to conduct our attack and apply 

Gröbner method to reduce RAA our results makes 

t=80,r=24,n=8andthen Γ ≈ 219.8 also from these result 

there exist spare matrix which proves that our result are 

true. Now we can reformulate the results in the following 

figure hence white colour express zero number. 

 

 
Figure 3 Gröbner result as a matrix 

 

VI. CONCLUSION  

 

In this paper we discussed various types of cryptanalysis 

techniques.We have demonstrated that Gröbnerbasis 

algorithms can be used to successfully breaking 

nonlinearity of S-Box which considered as being a big 

problem to attack AES even when they are practically 

secure against differential and linear cryptanalysis. We 

have demonstrated that Gröbnerbases for ciphers that 

follow our construction principle can be calculated by 

hand. These Gröbner bases are relative to a 

lexicographical order and thus do not give the solution to 

the polynomial system directly. However, our contribution 

shows that the problem of breaking AES can be reduced to 

a Gröbner basis conversion,by giving a closed formula for 

the ideal of all S-Box polynomials. This allowed us to 

determine solution of the total system as nonlinearity is 

decreased,now it is become easy to break any number of 

rounds 

 

REFERENCES 

 
[1] J. Daemen and V. Rijmen, "The Design of Rijndael: AES – The 

Advanced Encryption Standard." Springer-Verlag, 2002 

[2] Nicolas T. Courtois and Josef Pieprzyk. “Cryptanalysis of block 

ciphers with overdefined systems of equations” . In YuliangZheng, 

editor, Proceedings of Asiacrypt’02, Lecture Notes in Computer 
Science. Springer-Verlag, 2002.  

[3] W. Millan. “How to improve the nonlinearity of bijective s-boxes”. 
In Australian Conference on Information Security and Privacy 

1998, volume 1438, pages 181{192. Springer Verlag, 1998. 

[4] MagaliBardet, Jean-Charles Faug`ere, Bruno Salvy, and Bo-Yin 
Yang.” Asymptotic Behaviour of the Degree of Regularity of Semi-

Regular Polynomial Systems”. In P. Gianni, editor, Mega 2005, 

2005. 
[5] L. R. Knudsen. Contemporary Block Ciphers. In I. Damg°ard, 

editor, Lectures on Data Security. Modern Cryptology in Theory 

and Practice, volume 1561 of LectureNotes in Computer Science, 
pages pp. 105–126. Springer Verlag Heidelberg, 1999. 

[6] EladBarkan and Eli Biham. In how many ways can you write 

Rijndael? In YuliangZheng, editor, Proceedings of Asiacrypt’02, 

Lecture Notes in Computer Science. Springer-Verlag, 2002. Also a 

NESSIE report. 

[7] Eli Biham and Nathan Keller. Cryptanalysis of reduced variants of 
RIJNDAEL. In Proceedings of the Third Advanced Encryption 

Standard Conference. NIST, April 2000.  

[8] Jung HeeCheon, MunJu Kim, Kwangjo Kim, Jung-Yeun Lee, and 
SungWoo Kang.” Improved Impossible Differential Cryptanalysis 

of  SBox and its performance analysis”. In K. Kim, editor, 

Information Security and Cryptology - ICISC 2010, number 2288 



IARJSET ISSN (Online) 2393-8021 
ISSN (Print) 2394-1588 

 

       International Advanced Research Journal in Science, Engineering and Technology 

ISO 3297:2007 Certified 

Vol. 3, Issue 12, December 2016 
 

Copyright to IARJSET                                  DOI 10.17148/IARJSET.2016.31235                                                   189 

in Lecture Notes in Computer Science, pages 39–49. Springer, 

2010. 

[9] Alex Biryukov and Adi Shamir. Structural cryptanalysis of SASAS. 
In Birgit Pfitzmann, editor, Proceedings of Eurocrypt’01, number 

2045 in Lecture Notes in Computer Science, pages 394–405. 

Springer-Verlag, 2001. 
[10] D. Coppersmith. XSL against Rijndael. CRYPTO-GRAM, October 

2002. Cop02b, Don Coppersmith. Impact of Courtois and Piepryzk 

results. NIST AES Discussion Forum, September 2002. Available 
from http://www.nist.gov/aes. 

[11] Joan Daemen and Vincent Rijmen. The Design of Rijndael. 

Information Security and Cryptography. Springer Verlag, 2002. 
[12] N. Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, M. Stay, 

D. Wagner, David Wagner, and Doug Whiting. Improved 

cryptanalysis of Rijndael. In Bruce Schneier, editor, Proceedings of 

Fast Software Encryption – FSE’00, number 1978 in Lecture Notes 

in Computer Science, pages 213–230. Springer-Verlag, 2000. 
[13] ZazunaKukelova, Algebraic Methods in Computer vision, Doctoral 

thesis Czech Technical Universtyinpragne, Feb 2013 

[14] ChengqingLi, ―Cryptanalysis of Some Multimedia Encryption 
Schemes‖,IEEE transactions on multimedia ,vol.10,no.3,2008. 

[15] B. Buchberger. Bruno buchberger’sphd thesis 1965: An algorithm 

for finding the basis   elements of the residue class ring of a zero    
dimensional polynomial ideal. Journal of Symbolic Computation, 

pages 475–511, 2006. 

[16] J. Daemen and V. Rijmen. Rijndael. Submission to NIST AES 
Process, 1997.http://csrc.nist.gov/CryptoToolkit/aes/. 

[17] J. Daemen and V. Rijmen. Answer to "New Observations on 

Rijndael". Submission to NIST AES Process, 2000. 
http://csrc.nist.gov/CryptoToolkit/ aes/. 

[18] J. Daemen and V. Rijmen. The Design of Rijndael. Springer-

Verlag, 2002. 
[19]  National Institute of Standards and Technology. Advanced 

Encryption Standard. FIPS 197. 26 November 2001. 

[20]  N. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with 
overdefined systems of equations. IACR eprint server 

http://www.iacr.org, April 2002. 

[21] Nicolas T. Courtois and Josef Pieprzyk, Cryptanalysis of Block 
Ciphers with Overdefined Systems of Equations, Proc. of Asiacrypt 

2002, LNCS 2501, Springer-Verlag, 267–287, 2002. 

[22]  N. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with 
overdefined systems of equations,. In Asiacrypt 2002, Volume 2501 

of Lecture Notes in Computer Science, pages 267-287, Springer-

Verlag. 
[23] Jie Cui, Hong Zhong, Jiankai Wang and Runhua Shi, “Generation 

and Optimization of Rijndael S-box Equation System”, Information 

Technology Journal, 13: 2482–2488, 2014. 
[24] MagaliBardet, Jean-Charles Faug`ere, and Bruno Salvy. 

Complexity of Gr¨obner Basis Computation for Semi-Regular 

Overdetermined Sequences over GF(2) with Solutions in GF(2). 
Technical Report RR-5049, INRIA, 2003. 

[25] Jie Cui, Liusheng , Hong Zhong , Chang and Wei Yang ,”An 

Improved AES-S Box And Its Performance Analysis” International 
Journal of Innovative Computing information and Control, volume 

7 ,number 5 A, MAY 2014  

[26] A.M.Leventi-Peetz and J.V.Peetz, “Generating  S Box Multivariate 
quadratic equation Systems and Estimating Algebraic Attack 

Resistance Aided by Sage Math “GodesbergerAllee 185-18, DE-

53175 Bonn, Germany ,June ,2015  

 

 

 

 

 

 

http://www.nist.gov/aes

